」タグアーカイブ

空港内鉄道のデザイン

大きな空港に行くと,電車のようで電車でない乗り物があったりして,しかも,特定のゲートの乗客だけが乗れるようなシステムになっていたりして,なかなか興味深い.
WDW1218-029WDW1218-028
こういうデザインがなされていることもあり,なかなか凝っている.
WDW1211-026WDW1218-034
通常の一般の鉄道ではなかなかできないデザインでも,採用されていてなかなか楽しい.
(10年以上前の米国オーランド空港)

CANADIAN RAIL(GOTRAIN編)

クルマ社会のカナダであるが,主要都市には一応,通勤鉄道がある.ただし,朝は都心方向だけ,夕方は郊外方向だけというケースがほとんどなので,興味本位で乗車すると帰ってこられない可能性があるので要注意.
例えば,オンタリオ州のトロントには「GO train」というのがある.クルマではなくて列車で「GO」というネーミングには,「via rail」と似たような切迫感がある.ただし,「GO」は「GOvernment」つまり,州政府で運営であることを表している.
車両は2階建て車両で,例の汎用機関車が端っこに付く.
GetOnVIA10-078GetOnVIA10-084
もちろん,パーク&ライド対応
QB0301-040機関車が端っこに1両だけで,いちいち終点では機回ししない.反対側の客車には運転席があり,いわゆる制御客車である.反対向きには推進運転になる.GetOnVIA10-042

プレメトロ(どう見ても”ペイ”はしないけど)

日本では地平面を走るLRTの整備ですら「採算ガー」とかいう話になりがちでさっぱり話が進まないが,海外に行くと「採算ガー」と言うような視点では絶対に「ペイ」しないような交通システムが存在していたりする.
学生によくするどんぶり勘定である.
延長5kmのLRT路線を整備したとしよう.30億円/kmの整備費用がかかったとして30×5=150億円.この線路上をLRTが走る.(実際には難しいかもしれないが)金利が3%ほどで建設費を30年で返済したとしよう.そうすると総支払額は2倍あまりの350億円ほどとして,年間の支払いは,350億円÷30年=11.6億円/年.1日あたりにすると,11.6億円÷365日=320万円.朝6時から夜11までの17時間走ったとしよう.そうすると,18.8万円/時間.片道あたりだとその半分で9.4万円/時間/片道.5分毎に走ったとして,毎時12本なので,9.4万円÷12=7800円/列車.1人あたり200円払ったとして7800円÷200円/人=39人.朝から晩まで5分毎にやってくる電車は全て約40人乗っている・・・・全て運賃で賄うって厳しいねぇ.まだ電気代も,人件費も払ってないよぉ.
さて,ベルギーのアントワープ駅の地下にはLRTの発着場があり,地下鉄風だが走ってくるのはLRT用の小さな電車である.プレメトロという.
Europe08-1124
和蘭のアムステルダムでも地下鉄かと思いきや,LRT風電車が2編成併結でやってきたりする.
IMG_8835
こういった地下線は,地平に線路を敷くよりも建設費がかなり高く,キロあたり100〜200億円くらいはする.そうすると,上に書いた計算式の数字はそれぞれ5倍くらいになり,おおよそLRT用の電車では運びきれない数字になってしまう.
つまり,こういう地下を走るLRTというのは,日本の「採算ガー」とかいう風土では絶対にあり得ない交通機関なのである.でも,ベルギーやオランダには存在するし,クルマ社会の米国サンフランシスコにもあったと思う.交通機関単体では「採算ガー」採れませんが,都市全体としてはこうした方が適切であるとの判断で導入されている交通機関であるとも言える.
日本の「採算ガー」・・・何とかなりませんかね.それにこだわって失ってるものがいろいろありそうです.

アントワープ中央駅(BEFORE & AFTER)

アントワープというと,日本人には「フランダースの犬」だが,鉄道関係で言うと「立派な駅舎」で有名な駅である.
アントワープの中央駅に限らず,欧州の多くの駅は頭端式,つまり行き止まり式のホームで構成されており,その駅で終点の場合はいいのだが,さらに遠くに行くような場合には進行方向が変わったり,場合によってはその頭端式ホームの駅には停まらずに1つ手前の駅までしか来ないというようなことが起こる.
アントワープ中央駅の場合は,増加する列車回数に対応するとともに,頭端式の駅をスルーする列車に対応するために,大改良工事を行った.
10年以上前の工事中の様子は,下の写真のような感じ.
Europe08-0991
地平のホームのすぐ下に地下ホームを設けて2層式にするとともに,さらにその下をも掘って最下層に2面4線のスルー運転用の地下線を設けている.つまり,都合3層構造.地下線はそのまま市街地の地下を抜けて郊外に抜ける.
完成後はこんなかんじで,Thalysや運行中止になってしまったFyraなどが発着.日本なら「新××」駅を郊外に設けてしまいそうだが,中心駅に発着することを重視した改良工事だ.
IMG_8655

アントワープ中央駅(BEFORE & AFTER)

アントワープというと,日本人には「フランダースの犬」だが,鉄道関係で言うと「立派な駅舎」で有名な駅である.
アントワープの中央駅に限らず,欧州の多くの駅は頭端式,つまり行き止まり式のホームで構成されており,その駅で終点の場合はいいのだが,さらに遠くに行くような場合には進行方向が変わったり,場合によってはその頭端式ホームの駅には停まらずに1つ手前の駅までしか来ないというようなことが起こる.
アントワープ中央駅の場合は,増加する列車回数に対応するとともに,頭端式の駅をスルーする列車に対応するために,大改良工事を行った.
10年以上前の工事中の様子は,下の写真のような感じ.
Europe08-0991
地平のホームのすぐ下に地下ホームを設けて2層式にするとともに,さらにその下をも掘って最下層に2面4線のスルー運転用の地下線を設けている.つまり,都合3層構造.地下線はそのまま市街地の地下を抜けて郊外に抜ける.
完成後はこんなかんじで,Thalysや運行中止になってしまったFyraなどが発着.日本なら「新××」駅を郊外に設けてしまいそうだが,中心駅に発着することを重視した改良工事だ.
IMG_8655

車両と構造物の”限界設計”

構造物の限界状態設計法のお話し,ではありません.
英国ロンドンの地下鉄は,ご存じの人も多いように変な形をしている.ここまで切り詰めれば,無駄なしという感じの形状で,まずトンネルあり,それに合わせて電車ありという断面である.特に屋根の形状が特徴的で,出入り口の上方は丸く湾曲している.
おそらく初期の路線で建設費を抑えること,電車がここまで大量輸送に使われることを想定していなかったことなどから,小型車両が使われ,その後,電車の大型化に伴ってトンネルぎりぎりまで大きくなったのではないかと思うが,何かあった場合には逃げ道は前後方向以外存在しないなとも思う物理形状である.
Europe08-0100
日本では近年,工事費を抑えた地下鉄としてミニ地下鉄が建設される場合があるが,トンネル断面積ではこのロンドン地下鉄の方が小さい.ということは,日本でもここまで割り切ることが出来れば,さらに地下鉄の建設コストを下げることが出来る可能性はあるが,「安全性がー」と言う話になって,実現しないだろうなぁ.ロンドンで実用になっているのだから,日本でも問題ないと思うのだが.

レールだらけ(近鉄編)

レールだらけと言えば,この駅.結構有名であるが,2つ写っている電車がなければ,どのレールとどのレールが組になっているのかわからないほどである.ヨーロッパの駅は構内配線が複雑であるが,日本の駅は路線系統ごとに線路が別々になっていて,拠点駅では客の足で乗り換えさせるケースが多い.あるいは,駅を出てから立体交差.そういう点では,この駅は例外的かもしれない.
IMG_2718この駅は近鉄の大和西大寺駅で,奈良駅方面,大阪・神戸方面,京都方面,橿原神宮方面の4方向に路線が伸び,複雑な運行が行われるとともに,同駅が終点の列車もあり,さらに電車の車庫も併設という超絶ヤヤコシイ駅である.

  • 奈良方面↔大阪・神戸方面
    奈良方面↔京都方面
    京都方面↔橿原神宮方面
    京都方面↔当駅終点
    橿原神宮方面↔当駅終点

運行管理や線路保守等々,気が狂いそうなくらいヤヤコシイ駅だと思うが,おそらく便利さでは奈良県下で一番である.高架化の構想もあったと思うが,線路そのものが超絶ヤヤコシイ上,この駅の東隣には平城宮跡があり,工事も超絶ヤヤコシイことになりそうで,話は全く具現化していないようである.
リニアの奈良駅も奈良県下で揉めているが,工事が可能ならこの駅併設が奈良県民には最もhappyである可能性が高いが,地平線路はおろか,地下線であっても「地下水位が変化すると,木簡の保存状態が・・・」などという地区なので,かなり難しそうである.

レールだらけ(トラム編)

写真はドイツのカッセル市郊外のLRT停留所である。見ての通り、やたらとレールが多い。ロンドンの地下鉄とは異なり、走行用の電力は屋根上の電線から集電するので、そういう理由ではない。
IMG_0974
6本あるレールを左からA,B,C,D,E,Fとすると、A-D、B-E、C-Fがそれぞれ組になっており、いずれも車両の走行用である。A-Dの組は写真左側のプラットホームに発着する電車用、C-Fの組は写真右側のホーム発着用で、進行方向別にホームが別になっている。じゃぁB-Eはというと、通過する貨物列車用である。
もともとここは貨物線であり、LRTは貨物線を間借りしての運行であったそうだ。ところが、貨物線にホームを直接設けてしまうと、LRT車輌の方が貨車よりも小さいために、ホームで待っている人が貨車に接触してしまう可能性が出てきた。そこで停留所部分だけホームを中心から遠ざけ、LRTを遠ざけたホームに近づけるためにこんな複雑な線路になったということのようである。ホームへの進入部分の分岐器がまた独特である。日本では、なかなかこうやってまで実現させようという熱意がないが、インフラ活用術は見習うべきところが多い。
IMG_0953

レールだらけ(地下鉄編)

鉄道線路は左右のレールが1組になっている。わざわざ言わなくても、子供でも知っているお話。ちょっと詳しい子供なら、地下鉄には3本目のレールがあることを知っていることもある。
第三軌条(サードレール)と言って、地下鉄電車に電力を供給するためのレールで、その代わりに屋根上の架線が無い。架線が無いとその分だけトンネルを小さくできるので、建設費を安く抑えることができる。
じゃぁ、この地下鉄は? レールが4本ある。ロンドンの地下鉄。最も左のレールは電力供給用、左から2番目と最右端のレールは車輪が走行するためのレール。じゃぁ、中央のレールは?
Europe08-0104
中央のレールも電力供給用。最も左のレールと中央のレールには碍子がついており、絶縁に気が使われていることがわかる。この2組でプラス極とマイナス極(厳密にはちょっと違うようだが)になっている。通常は走行用のレールをマイナス極と共用にするのだが、ここでは別にレールがわざわざ準備されている。
別にすることのメリットとしては、変電所に帰る電流が地中などを伝って思いもよらない箇所に電蝕…つまり一種の電気分解ですね…の影響を与えることを防いだり,電車のボディーとホームとの間に電位差が生じて乗客が感電したりすることを防げる(だったっけな)。

東海道新幹線の能力

日本で最も輸送能力が高い幹線鉄道は,言うまでも無いが東海道新幹線である.1編成16両で,1300人以上の座席定員がある.
さて,東海道新幹線の運転可能本数は,以前は4分間隔の毎時15本であったが,これは東京駅の処理能力,もっと厳密に言うと,東京駅のすぐ横浜側の分岐器の能力に依るところが大きかった.他の駅が駅構内への進入速度が70キロで設計されているのに対し,ここの分岐器だけが60キロ制限になっており,列車が構内に入りきるのに他の駅よりも時間がかかったからと思われる.東京駅付近での列車の最小運転間隔は3.75分であったが,新大阪駅付近ではそれよりも短かったようである.新幹線の列車検知はレールに特殊な電流を流して検知する方法(軌道回路)が原則だが,東京駅および一部の駅には光学式の装置が併設されており,列車の進入完了の検知精度を向上させているのではないかと思われる.
写真の右上の小箱が光学式の検知器,左側の箱2つが軌道回路用の装置.(東京駅)
LX-2005-05-11-05LX-2005-05-11-352006年からは保安装置がデジタル化されて,ガクンガクンと何度も急なブレーキをかける方式から滑らかにブレーキをかける方式に改良されるとともに,運転間隔が3分間隔以下になっており,京都駅や名古屋駅ではピーク時間帯には時刻表上であるが,2分間隔で列車が雁行することもある.米原や岐阜羽島などで各停タイプの列車がのぞみ号にゴボウ抜きされる場合の運転間隔も,実測すると2分台になっている.
東海道新幹線には,まだ潜在能力がありそうである.